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1 Introduction  

What is a Multi-Robot System? 

A multi-robot system is a system in which multiple robots communicate and collaborate 
simultaneously to accomplish various tasks. The robots are trained beforehand to adapt to the 
environment and conditions. They learn to find the optimal path to complete the task in the 
most efficient and fastest way possible, and then begin practical execution accordingly. 

What is a Single-Robot System? 

A single-robot system consists of one robot operating independently, typically under the 
control of a centralized system. 

What are the Differences Between Multi-Robot and Single-Robot Systems? 

The main difference lies in communication and control. Single-robot systems are usually 
managed by a central controller, whereas multi-robot systems may follow different 
management strategies depending on the application. While single robots handle individual 
tasks, multi-robot systems involve complex network structures to coordinate and complete 
tasks collaboratively.  

2 Background and Related Work  
2.1 Coordination Architectures in Multi-Robot Systems  

There are three different coordination architectures: Centralized, Decentralized, and Distributed. 

 

In Centralized systems, robots are managed from a single control point, making the system simple. 
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In Distributed systems, robots make their own decisions. They communicate with other robots in the 
environment, exchange information, and complete the task within a complex network structure. 

 

In Decentralized systems, robots only consider nearby robots and act accordingly. They do not have 
access to global information. 

  

2.2 Approaches for Multi-Robot Collaboration  

• Rule-based systems 
Fixed task allocation, logical rules, sequential processing 

• Optimization-based methods 
Task allocation using Hungarian Algorithm, Linear Programming 

• Auction-based mechanisms 
Contract Net Protocol, decentralized task bidding 

• Heuristic approaches 
Genetic algorithms, swarm optimization 

• Machine Learning-based methods 
Supervised, imitation, and reinforcement learning 

• Graph-based methods 
GNNs for communication structure, influence modeling 

Among these, reinforcement learning has gained significant attention due to its ability to learn from 
interaction without explicit programming. 

   

What is Reinforcement Learning and why is it used in robotics? 

Reinforcement Learning is a type of learning method that aims to discover the most 

efficient long-term strategy. 

Reinforcement Learning (RL) is a machine learning system that enables an agent (such 

as a robot) to learn how to behave in an environment through experience. The agent 

receives a reward after each action and tries to learn the best behavior based on these 

rewards. The goal is to maximize cumulative reward through trial and error, eventually 

developing a strategy (policy). 

The general logic behind RL is “do the right thing, earn the reward.”   

2.4 RL-Based Learning Algorithms  



Algorithm Description 
 

Algorithm Description 
 

Q-learning 
 

The agent learns which action is better 
through a Q-table. 

 

SARSA 
 

Similar to Q-learning, but allows for 
more flexible decision-making. 

 

Deep Q-Network (DQN) 
 

A combination of Q-learning and deep 
learning (neural networks). 

 

Policy Gradient 
 

The agent learns the policy directly; no 
Q-table is used. 

 

  

   

2.4.1 Q-Learning  

Q-Learning enables robots to learn Q-values, which are action-value functions, in order 
to maximize long-term rewards.

 
  

  



In this simulation, the Q-Learning algorithm has been used. In short, Q-Learning works 

as follows: 

The robot gains rewards by completing tasks in the environment through trial and error. 

Based on the rewards it receives (i.e., the tasks it completes), it builds a Q-table for the 

environment. This Q-table is updated using a backpropagation-like method. Depending 

on its current state, the robot uses the continuously updated Q-table to determine 

which path is likely to yield better results. With the final version of the Q-table, the robot 

determines a policy, which becomes the optimal path—i.e., the fastest and most 

efficient route to complete the task.  

Agent: The entity that makes decisions and takes actions (e.g., a robot). 
Environment: The world in which the agent operates (e.g., a maze, a game area). 
State: The agent’s current position or condition at a given moment. 
Action: The possible moves or operations the agent can perform. 
Reward: A numerical value (positive or negative) the agent receives based on its action. 
Policy: The strategy that defines which action the agent takes in a given state. 
Q-Value: The expected reward of taking a specific action in a specific state. 

 

 

For Episode 1: 
The robot selects an action completely at random. The chosen action (↑) is upward, and 
since this action moves the robot outside the grid boundaries, it receives a penalty. As a 
result, the Q-values are calculated immediately, and the state-action pair that caused 
the penalty is updated in the Q-table. Then, the robot proceeds with other actions. It 
appears that the robot did not reach any reward during Episode 1, and by the end of the 



episode, it generates a Q-table as shown below. This process continues similarly for 

each episode.  

   

For Episode 23: 
The robot takes its actions based on the Q-table it has developed up until Episode 23. 
As seen in Step 7, it reaches the reward. Consequently, state S14 receives a positive 
value. Since the reward is located at S15, the robot learns that it must definitely move 
from S14 to S15, and from this point on, it consistently chooses the rightward (→) action 
to reach S15 from S14. The updated Q-table begins to receive positive feedback values 
due to the received reward, and once the learning is complete, the optimal path is 
formed.

 



As can be seen from the table below, the usage percentage of S14 is very high, indicating it is 
part of the optimal path. Right after that, we see the paths leading to S14, such as from S10 
and then from S9. 

 
  

The Q-Table prepared for the optimal path in the final state of the learned robots is as follows. 

State  ←  ↓  →  ↑  

0  0.44  0.95  0.95  0.44  

1  0.94  -1.00  0.96  0.45  

2  0.95  0.97  0.95  0.46  

3  0.96  -0.99  0.45  0.45  

4  0.45  0.96  -1.00  0.94  



5  0.00  0.00  0.00  0.00  

6  -1.00  0.98  -1.00  0.96  

7  0.00  0.00  0.00  0.00  

8  0.46  -1.00  0.97  0.95  

9  0.96  0.98  0.98  -1.00  

10  0.97  0.99  -1.00  0.97  

11  0.00  0.00  0.00  0.00  

12  0.00  0.00  0.00  0.00  

13  -1.00  0.48  0.99  0.97  

14  0.98  0.49  1.00  0.98  

15  0.00  0.00  0.00  0.00  

  

2.4.2 Deep Q-Network (DQN)  

It is the version of the classic Q-Learning algorithm combined with artificial neural 

networks. Instead of a Q-table, it uses a Deep Neural Network to estimate Q-values for 

each state and action. In short, it is a reinforcement learning algorithm that uses deep 

learning to compute Q-values. 



Neural Network  Girdi: durum (state), Çıktı: her aksiyon için 
tahmini Q-değeri  

Replay Buffer  Deneyimler (state, action, reward, next_state) 
hafızada saklanır ve rastgele örneklenir 
(overfitting’i azaltır)  

Target Network  Ana ağın sabit bir kopyasıdır. Kararlılığı 
artırır. Belirli aralıklarla güncellenir.  

ε-greedy policy  Keşif (exploration) ve sömürü (exploitation) 
dengesi sağlar.  

  

   

  

2.4.3 Centralized Training with Decentralized Execution (CTDE)  

During the training phase, the robots are trained together and learn collectively. This includes 
building a shared Q-table and defining a joint policy. In the real world, when the robots begin 
to operate practically, they make decisions independently, adapt to the environment, observe 
other robots, and adjust their behavior accordingly. There is no need for real-time 
communication. 

Training Phase (Centralized): 
• Robot A and Robot B are trained together. 
• They are aware of each other’s actions. 
• They learn as a team using a shared reward function. 

Real-Time Operation (Decentralized): 
• Robot A makes decisions based solely on its own cameras and sensors. 
• Robot B behaves independently in the same way. 
• Even without communication, they work in harmony thanks to the strategies learned during 
training. 

  

   

2.4.4 Multi-Agent Algorithms   



  

 

   

What are the relevant open sources and how have they contributed? 

  

 

3 Environment Design and Simulation 
How simulation environment designed? 

 This project focuses on designing a simulated environment in which one or more robots can 
collaboratively prepare a hamburger by interacting with different stations in a grid-based kitchen. The 
main purpose of the system is to enable these robots to navigate, collect, process, and combine 
ingredients to produce a valid hamburger. 



The environment consists of a fixed-size 2D 7X8 grid where each cell can represent either a walkable 
area, a station, or an object. 

 

Grid Layout and Station Design 

Each cell on the grid corresponds to a specific entity: 

• B: Bread Station 

• L: Lettuce Station 

• TO: Tomato Station 

• C: Cutting Board 

• P: Pan (Stove) 

• M: Meat Station 

• PL: Plate Station 

• T: Table (work surfaces where items can be dropped and combined) 

• D: Delivery Station 

• X: Trash Bin 

• .: Walkable free space 

These stations were initially planned in a spreadsheet and later implemented in Python using a matrix-
based system. Each type of station supports specific interactions; chopping vegetables on the cutting 
board or cooking meat on the pan. 

 

 

Items 

 

Another important point of the environment is merging items. Assets and combination rules are 
defined one by one. The rule ise, you can merge items only if there is a plate.  



Combinations: 

 

    single combinations 

    Plate + Bread --> plate_bread.png 

    Plate + Tomato (Chopped) --> plate_tomato.png 

    Plate + Lettuce (Chopped) --> plate_lettuce.png 

    Plate + Meat (Cooked) --> plate_meat.png 

 

    binary combinations 

    Plate + Bread + Tomato --> plate_bread_tomato.png 

    Plate + Bread + Lettuce --> plate_bread_lettuce.png 

    Plate + Bread + Meat -->  plate_bread_meat.png 

    Plate + Tomato + Lettuce --> plate_tomato_lettuce.png 

    Plate + Tomato + Meat --> plate_tomato_meat.png 

    Plate + Lettuce + Meat --> plate_lettuce_meat.png 

 

    triple combinations 

    Plate + Bread + Tomato + Lettuce  --> plate_bread_tomato_lettuce.png 

    Plate + Bread + Tomato + Meat  --> plate_bread_tomato_meat.png 

    Plate + Bread + Lettuce + Meat --> plate_bread_lettuce_meat.png 

    Plate + Tomato + Lettuce + Meat --> plate_tomato_lettuce_meat.png 

 

    quadruple combination 

    Plate + Bread + Tomato + Lettuce + Meat (Full Burger) --> plate_burger.png 

 

There are other functions of this project as LIVE/REPLY modes. In the Live mode user controls our 
chef robot manually. Additionally, Reply for runing episodes which are ran during in the learning 
stage of agents. 

Why was hamburger production chosen? 
Hamburger production seemed suitable for simulating real-life task division. Although the main focus 
of this project was creating a grid-based environment, it has the potential to be extended by 



integrating MARL agents into a Unity-based multiplayer game called Kitchen Chaos, which could be 
open-sourced in the future. Targeting multiplayer games is highly appropriate for simulating multi-
agent collaboration. All that would be needed is to replace the players with agents. 

 

Infrastructure for Logging and Metrics 

Logging is the process of recording all actions performed by agents in the simulation (e.g., movement, 
interactions, object handling) and any changes in the environment. These records typically include 
timestamp, agent ID, position, action, and interaction details. 

By analyzing what agents do in which states, their learning process can be evaluated. In multi-agent 
systems, each agent's contribution can be measured. In the long term, the same scenario can be 
replayed with different algorithms for comparison. 

 

Agent Logs (agent_logs) 
Each agent’s actions are logged in detail: 

• Action type: pickup, drop, chop, cook, merge, discard 
• Position: The grid position where the action took place 
• Time: Time step measured by pygame.time.get_ticks() 
• Details: Object carried, transformed ingredient, etc. 

 

Environment Logs (burger_logs) 
Plate creation and combination events triggered by agent interactions are recorded: 

• Plate position 
• Contents (ingredients) 
• Which agent(s) contributed 
• Final plate type (e.g., plate_burger, plate_bread_meat, etc.) 

 

Snapshot Logs (snapshot_logs) 
For each time step: 

• Agents’ positions 
• Direction (agent_dirs) 
• Held item (if any) 
• Status of all objects in the environment (e.g., a tomato on a table) 

 

Possible Performance Metrics 

Total Reward: 
Represents the cumulative reward collected by each agent throughout training. For example, a 
successful hamburger delivery yields a positive reward added to this metric. 



Task Completion Rate: 
Indicates how many hamburgers are successfully completed per episode. It directly reflects the 
system's effectiveness. 

Collaboration Score: 
Measures whether multiple agents contributed to the creation of a single hamburger and how much 
each agent contributed to the process. 

Ineffective Action Rate: 
Tracks the ratio of actions that were unnecessary or had no useful outcome (e.g., moving randomly, 
picking up incorrect items). 

Action Efficiency: 
Calculates the average number of actions required to complete a hamburger. Lower values indicate 
more efficient behavior. 

Convergence (Learning Stability): 
Shows when agents begin to consistently perform well during training. It reflects the point at which 
their behavior stabilizes and converges toward an optimal strategy. 

 

 

Versioning Mini Kitchen During Development 

Version 00–03: Core Structure and Interface 

• Created the initial grid layout with symbolic station representations (e.g., B for Bread Station, 
T for Table). 

• Added a movable agent with directional control and basic animations. 
• Implemented a side information panel to display agent state. 

Version 04–06: Item Interaction and Basic Object Handling 

• Introduced the ability for agents to pick up and drop items. 
• Defined item states (e.g., {"type": "meat", "state": "raw"}) and contextual interactions using 

the space key. 
• Enabled agents to place items on tables and visualized objects in the environment. 

Version 07–08: Cooking, Chopping, and Visual Feedback 

• Implemented logic for chopping and cooking ingredients at specific stations. 
• Replaced symbolic item representation with dynamically loaded PNG images for each item 

state. 

Version 09–10: Ingredient Combination and Burger Construction 

• Developed a merging system to combine plate ingredients into full hamburgers with one-to-
one mappings (e.g., Plate + Meat → Plate_Meat). 

• Standardized item types and combination rules to ensure consistency and prevent logical 
conflicts. 

• Ensured that once combined, ingredients cannot be separated (realistic cooking constraint). 



Version 11: Multi-Agent Logging and RL Readiness 

• Introduced full multi-agent support (NUM_AGENTS) with independent position, inventory, 
and action logs. 

• Implemented three-tier logging: agent_logs for actions, burger_logs for plate combinations, 
and snapshot_logs for full environment states. 

• Established the infrastructure required for reward tracking, collaboration analysis, and replay 
visualization. 

• Laid the foundation for MARL experiments (e.g., DQN, CTDE). 

Version 12–13: Replay Mode and Live/Replay Toggle 

• Enabled users to replay past episodes using a GUI episode selector. 
• Implemented Live vs. Replay toggling and resolved agent desync issues during replay. 

 

Agents can perform the following primitive actions: 

• Move: Up, Down, Left, Right 

• Interact: Pick up, drop, chop, cook, combine, or discard items depending on the context    

 

How Does Collaboration Take Place? 

In this study, robots (agents) are designed to collaborate within the same environment to produce 
hamburgers. Each agent has its own inventory, position, and perception. However: 

• Different agents can contribute to the same plate. 
For example, Agent 0 can cook and place the meat, while Agent 1 can add the tomato. 

• This collaboration is realized through contributions toward shared goals (e.g., completing 
the same hamburger). 

• Since agents work toward shared tasks, cooperation emerges via uncoordinated but 
complementary actions, which is especially suitable for Centralized Training with 
Decentralized Execution (CTDE) scenarios. 

 

How Is the Reward System Designed? 

The reward function is designed to encourage agents to learn meaningful and efficient behaviors. The 
proposed structure is as follows: 



 

Rewards are assigned individually to agents. However, the overall success (e.g., completing a 
hamburger) is the result of teamwork, so team contribution is indirectly rewarded. 

 

6 Experiments and Results  
 

Firstly, I tried to determine end of the episode as a making complete burger. But it meant 
you were teaching a baby to run before she could crawl. So, even in the first episode, it 
couldn’t finished the episode even though time reached 55 minutes. 

 

But then end of the episode determined as interacting with any element. So reaching 
reward was easier.  There is some results for the agents reaching to goal: 

 

 



 

According to our study, every movement made in the mini kitchen is designed to be recorded, 
including the direction of the agents, the location of the items they hold, and the dynamic changes in 
the environment. Even if our study does not reach the desired result, it forms an original and gradually 
developed basis for reporting. 

In the future our plan is running it with more agents and we will determine step by step goals. So, 
baby can learn crawl than walking than running. Also applying different algortihms, approaches and 
training agents for up level of this mini game are our other options. 
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