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1 Introduction

What is a Multi-Robot System?

A multi-robot system is a system in which multiple robots communicate and collaborate
simultaneously to accomplish various tasks. The robots are trained beforehand to adapt to the
environment and conditions. They learn to find the optimal path to complete the task in the
most efficient and fastest way possible, and then begin practical execution accordingly.

What is a Single-Robot System?

A single-robot system consists of one robot operating independently, typically under the
control of a centralized system.

What are the Differences Between Multi-Robot and Single-Robot Systems?

The main difference lies in communication and control. Single-robot systems are usually
managed by a central controller, whereas multi-robot systems may follow different
management strategies depending on the application. While single robots handle individual
tasks, multi-robot systems involve complex network structures to coordinate and complete
tasks collaboratively.

2 Background and Related Work
2.1 Coordination Architectures in Multi-Robot Systems

There are three different coordination architectures: Centralized, Decentralized, and Distributed.

In Centralized systems, robots are managed from a single control point, making the system simple.
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In Distributed systems, robots make their own decisions. They communicate with other robots in the

environment, exchange information, and complete the task within a complex network structure.

In Decentralized systems, robots only consider nearby robots and act accordingly. They do not have

access to global information.

2.2 Approaches for Multi-Robot Collaboration

¢ Rule-based systems

Fixed task allocation, logical rules, sequential processing

e Optimization-based methods

Task allocation using Hungarian Algorithm, Linear Programming

e Auction-based mechanisms

Contract Net Protocol, decentralized task bidding

e Heuristic approaches

Genetic algorithms, swarm optimization

e Machine Learning-based methods

Supervised, imitation, and reinforcement learning

e Graph-based methods

GNNs for communication structure, influence modeling

Among these, reinforcement learning has gained significant attention due to its ability to learn from

interaction without explicit programming.

What is Reinforcement Learning and why is it used in robotics?

Reinforcement Learning is a type of learning method that aims to discover the most
efficient long-term strategy.

Reinforcement Learning (RL) is a machine learning system that enables an agent (such
as arobot) to learn how to behave in an environment through experience. The agent
receives a reward after each action and tries to learn the best behavior based on these
rewards. The goal is to maximize cumulative reward through trial and error, eventually
developing a strategy (policy).

The general logic behind RL is “do the right thing, earn the reward.”

2.4 RL-Based Learning Algorithms



Algorithm Description Algorithm Description

Q-learning The agent learns which action is better
through a Q-table.

SARSA Similar to Q-learning, but allows for
more flexible decision-making.

Deep Q-Network (DQN) A combination of Q-learning and deep
learning (neural networks).

Policy Gradient The agent learns the policy directly; no
Q-table is used.

2.4.1 Q-Learning

Q-Learning enables robots to learn Q-values, which are action-value functions, in order
to maximize long-term rewards.

New Q(s,a) |=|Q(s,a) + |a [[R(s,a)|+ vy maxQ'(s',a"')|-|Q(s,a)|]

New Q Value for that state and the action
Learning Rate

Reward for taking that action at that state

Current Q Values

Maximum expected future reward given
the new state (s') and all possible actions
at that new state.

Discount Rate



In this simulation, the Q-Learning algorithm has been used. In short, Q-Learning works
as follows:

The robot gains rewards by completing tasks in the environment through trial and error.
Based on the rewards it receives (i.e., the tasks it completes), it builds a Q-table for the
environment. This Q-table is updated using a backpropagation-like method. Depending
on its current state, the robot uses the continuously updated Q-table to determine
which path is likely to yield better results. With the final version of the Q-table, the robot
determines a policy, which becomes the optimal path—i.e., the fastest and most

efficient route to complete the task.

Agent: The entity that makes decisions and takes actions (e.g., a robot).

Environment: The world in which the agent operates (e.g., a maze, a game area).

State: The agent’s current position or condition at a given moment.

Action: The possible moves or operations the agent can perform.

Reward: A numerical value (positive or negative) the agent receives based on its action.
Policy: The strategy that defines which action the agent takes in a given state.

Q-Value: The expected reward of taking a specific action in a specific state.
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For Episode 1:

The robot selects an action completely at random. The chosen action (1) is upward, and
since this action moves the robot outside the grid boundaries, it receives a penalty. As a
result, the Q-values are calculated immediately, and the state-action pair that caused
the penalty is updated in the Q-table. Then, the robot proceeds with other actions. It
appears that the robot did not reach any reward during Episode 1, and by the end of the



episode, it generates a Q-table as shown below. This process continues similarly for
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each episode.

For Episode 23:

The robot takes its actions based on the Q-table it has developed up until Episode 23.
As seenin Step 7, it reaches the reward. Consequently, state S14 receives a positive
value. Since the reward is located at S15, the robot learns that it must definitely move
from S14 to S15, and from this point on, it consistently chooses the rightward (») action
to reach S15 from S14. The updated Q-table begins to receive positive feedback values
due to the received reward, and once the learning is complete, the optimal path is
formed.
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As can be seen from the table below, the usage percentage of S14 is very high, indicating it is
part of the optimal path. Right after that, we see the paths leading to S14, such as from S10
and then from S9.

Q-Value Learning for States Along Optimal Path
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The Q-Table prepared for the optimal path in the final state of the learned robots is as follows.

State — ! — i

0 0.44 0.95 0.95 0.44
1 0.94 -1.00 0.96 0.45
2 0.95 0.97 0.95 0.46
3 0.96 -0.99 0.45 0.45

4 0.45 0.96 -1.00 0.94



5 0.00 0.00 0.00 0.00

6 -1.00 0.98 -1.00 0.96
7 0.00 0.00 0.00 0.00
8 0.46 -1.00 0.97 0.95
9 0.96 0.98 0.98 -1.00
10 0.97 0.99 -1.00 0.97
11 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00
13 -1.00 0.48 0.99 0.97
14 0.98 0.49 1.00 0.98
15 0.00 0.00 0.00 0.00

2.4.2 Deep Q-Network (DQN)

It is the version of the classic Q-Learning algorithm combined with artificial neural
networks. Instead of a Q-table, it uses a Deep Neural Network to estimate Q-values for
each state and action. In short, it is a reinforcement learning algorithm that uses deep

learning to compute Q-values.



Neural Network Girdi: durum (state), Cikti: her aksiyon i¢in
tahmini Q-degeri

Replay Buffer Deneyimler (state, action, reward, next_state)
hafizada saklanir ve rastgele drneklenir

(overfitting’i azaltir)

Target Network Ana agin sabit bir kopyasidir. Kararlilig:

artirir. Belirli araliklarla giincellenir.

e-greedy policy Kesif (exploration) ve somiirii (exploitation)

dengesi saglar.

2.4.3 Centralized Training with Decentralized Execution (CTDE)

During the training phase, the robots are trained together and learn collectively. This includes
building a shared Q-table and defining a joint policy. In the real world, when the robots begin
to operate practically, they make decisions independently, adapt to the environment, observe
other robots, and adjust their behavior accordingly. There is no need for real-time
communication.

Training Phase (Centralized):

* Robot A and Robot B are trained together.

* They are aware of each other’s actions.

* They learn as a team using a shared reward function.

Real-Time Operation (Decentralized):

* Robot A makes decisions based solely on its own cameras and sensors.

* Robot B behaves independently in the same way.

* Even without communication, they work in harmony thanks to the strategies learned during
training.

2.4.4 Multi-Agent Algorithms



Method

Action Space

Coordination

Communication

Advantage

QL Discrete None None Simple, independent

MADDPG Continuous Yes Centralized (training) Continuous action spaces

QMIX Discrete Team Q-value None Centralized value
decomposition

MAAC Discrete/Cont. Yes Indirect via attention Effective information
selection

CommNet Usually cont. Yes Learnable Shared communication

TarMAC Usually cont. Yes Selective messaging Targeted message passing

GNN-Based Mixed Yes Via graph structure Learns dynamic relationships

What are the relevant open sources and how have they contributed?

Category Tool / Platform Description

Simulation Gazebo + ROS Physical robot and sensor simulations
PettingZoo MARL environments (games, task allocation)

RL Library RLIib (Ray) Distributed and multi-agent RL training
PyMARL Designed for MARL algorithms like QMIX

MARL Environment MPE (Particle Env) Simple physical multi-agent environments

SMAC (StarCraft Challenge) Strategy-focused MARL benchmark

environment

Communication-Based CommNet / TarMAC Coordination through learnable communication

Real Robot System Robotarium Remotely assign tasks to real robots

3 Environment Design and Simulation
How simulation environment designed?

This project focuses on designing a simulated environment in which one or more robots can
collaboratively prepare a hamburger by interacting with different stations in a grid-based kitchen. The
main purpose of the system is to enable these robots to navigate, collect, process, and combine
ingredients to produce a valid hamburger.



The environment consists of a fixed-size 2D 7X8 grid where each cell can represent either a walkable
area, a station, or an object.

Grid Layout and Station Design
Each cell on the grid corresponds to a specific entity:
¢ B: Bread Station

L: Lettuce Station

¢ TO: Tomato Station

e C: Cutting Board

e P: Pan (Stove)

e M: Meat Station

e PL: Plate Station

e T: Table (work surfaces where items can be dropped and combined)
e D: Delivery Station

X: Trash Bin

.. Walkable free space

These stations were initially planned in a spreadsheet and later implemented in Python using a matrix-
based system. Each type of station supports specific interactions; chopping vegetables on the cutting
board or cooking meat on the pan.

o0 Mini Kitchen Environment

Items

Another important point of the environment is merging items. Assets and combination rules are

defined one by one. The rule ise, you can merge items only if there is a plate.



Combinations:

single combinations

Plate + Bread --> plate_bread.png

Plate + Tomato (Chopped) --> plate_tomato.png
Plate + Lettuce (Chopped) --> plate lettuce.png

Plate + Meat (Cooked) --> plate_meat.png

binary combinations

Plate + Bread + Tomato --> plate_bread tomato.png
Plate + Bread + Lettuce -->plate_bread lettuce.png
Plate + Bread + Meat --> plate_bread meat.png

Plate + Tomato + Lettuce --> plate_tomato_lettuce.png
Plate + Tomato + Meat --> plate_tomato_meat.png

Plate + Lettuce + Meat -->plate_lettuce meat.png

triple combinations

Plate + Bread + Tomato + Lettuce -->plate _bread tomato lettuce.png
Plate + Bread + Tomato + Meat --> plate_bread tomato_meat.png
Plate + Bread + Lettuce + Meat -->plate_bread lettuce meat.png

Plate + Tomato + Lettuce + Meat ~ --> plate_tomato_lettuce meat.png

quadruple combination

Plate + Bread + Tomato + Lettuce + Meat (Full Burger) --> plate_burger.png

There are other functions of this project as LIVE/REPLY modes. In the Live mode user controls our
chef robot manually. Additionally, Reply for runing episodes which are ran during in the learning

stage of agents.

Why was hamburger production chosen?
Hamburger production seemed suitable for simulating real-life task division. Although the main focus
of this project was creating a grid-based environment, it has the potential to be extended by



integrating MARL agents into a Unity-based multiplayer game called Kifchen Chaos, which could be
open-sourced in the future. Targeting multiplayer games is highly appropriate for simulating multi-
agent collaboration. All that would be needed is to replace the players with agents.

Infrastructure for Logging and Metrics

Logging is the process of recording all actions performed by agents in the simulation (e.g., movement,
interactions, object handling) and any changes in the environment. These records typically include
timestamp, agent ID, position, action, and interaction details.

By analyzing what agents do in which states, their learning process can be evaluated. In multi-agent
systems, each agent's contribution can be measured. In the long term, the same scenario can be
replayed with different algorithms for comparison.

Agent Logs (agent_logs)
Each agent’s actions are logged in detail:

Action type: pickup, drop, chop, cook, merge, discard

Position: The grid position where the action took place
Time: Time step measured by pygame.time.get ticks()
Details: Object carried, transformed ingredient, etc.

Environment Logs (burger logs)
Plate creation and combination events triggered by agent interactions are recorded:

Plate position

Contents (ingredients)

Which agent(s) contributed

Final plate type (e.g., plate_burger, plate_bread meat, etc.)

Snapshot Logs (snapshot_logs)
For each time step:

Agents’ positions

Direction (agent dirs)

Held item (if any)

Status of all objects in the environment (e.g., a tomato on a table)

Possible Performance Metrics

Total Reward:
Represents the cumulative reward collected by each agent throughout training. For example, a
successful hamburger delivery yields a positive reward added to this metric.



Task Completion Rate:
Indicates how many hamburgers are successfully completed per episode. It directly reflects the
system's effectiveness.

Collaboration Score:
Measures whether multiple agents contributed to the creation of a single hamburger and how much
each agent contributed to the process.

Ineffective Action Rate:
Tracks the ratio of actions that were unnecessary or had no useful outcome (e.g., moving randomly,
picking up incorrect items).

Action Efficiency:
Calculates the average number of actions required to complete a hamburger. Lower values indicate
more efficient behavior.

Convergence (Learning Stability):
Shows when agents begin to consistently perform well during training. It reflects the point at which
their behavior stabilizes and converges toward an optimal strategy.

Versioning Mini Kitchen During Development

Version 00—03: Core Structure and Interface

e Created the initial grid layout with symbolic station representations (e.g., B for Bread Station,
T for Table).

e Added a movable agent with directional control and basic animations.

¢ Implemented a side information panel to display agent state.

Version 04-06: Item Interaction and Basic Object Handling

¢ Introduced the ability for agents to pick up and drop items.
e Defined item states (e.g., {"type": "meat", "state": "raw"}) and contextual interactions using
the space key.

¢ Enabled agents to place items on tables and visualized objects in the environment.
Version 07—08: Cooking, Chopping, and Visual Feedback

¢ Implemented logic for chopping and cooking ingredients at specific stations.
¢ Replaced symbolic item representation with dynamically loaded PNG images for each item
state.

Version 09—-10: Ingredient Combination and Burger Construction

e Developed a merging system to combine plate ingredients into full hamburgers with one-to-
one mappings (e.g., Plate + Meat — Plate_Meat).

e Standardized item types and combination rules to ensure consistency and prevent logical
conflicts.

¢ Ensured that once combined, ingredients cannot be separated (realistic cooking constraint).



Version 11: Multi-Agent Logging and RL Readiness

¢ Introduced full multi-agent support (NUM_AGENTS) with independent position, inventory,
and action logs.

¢ Implemented three-tier logging: agent logs for actions, burger logs for plate combinations,
and snapshot_logs for full environment states.

o Established the infrastructure required for reward tracking, collaboration analysis, and replay
visualization.

¢ Laid the foundation for MARL experiments (e.g., DQN, CTDE).

Version 12—-13: Replay Mode and Live/Replay Toggle

e Enabled users to replay past episodes using a GUI episode selector.
e Implemented Live vs. Replay toggling and resolved agent desync issues during replay.

Agents can perform the following primitive actions:
e Move: Up, Down, Left, Right

e Interact: Pick up, drop, chop, cook, combine, or discard items depending on the context

How Does Collaboration Take Place?

In this study, robots (agents) are designed to collaborate within the same environment to produce

hamburgers. Each agent has its own inventory, position, and perception. However:

o Different agents can contribute to the same plate.

For example, Agent 0 can cook and place the meat, while Agent 1 can add the tomato.

e This collaboration is realized through contributions toward shared goals (e.g., completing

the same hamburger).

¢ Since agents work toward shared tasks, cooperation emerges via uncoordinated but
complementary actions, which is especially suitable for Centralized Training with

Decentralized Execution (CTDE) scenarios.

How Is the Reward System Designed?

The reward function is designed to encourage agents to learn meaningful and efficient behaviors. The

proposed structure is as follows:



Event Reward

Correct ingredient picked up +1
Ingredient correctly chopped/cooked +2
Ingredient properly added to plate +3
Hamburger completed +10
Incorrect action (e.g., discarding item) -2
Useless movement -0.1

Rewards are assigned individually to agents. However, the overall success (e.g., completing a

hamburger) is the result of teamwork, so team contribution is indirectly rewarded.

6 Experiments and Results

Firstly, | tried to determine end of the episode as a making complete burger. But it meant
you were teaching a baby to run before she could crawl. So, even in the first episode, it
couldn’t finished the episode even though time reached 55 minutes.

« /Jusr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an i
super().__init__(activity_regularizer=activity_regularizer, skkwargs)

/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an i
super().__init__(activity_regularizer=activity_regularizer, skkwargs)

+ O Executing (55m 6s)

But then end of the episode determined as interacting with any element. So reaching
reward was easier. There is some results for the agents reaching to goal:

5~ Episode 1/3 — Rewards: [-0.6, -0.4]
Episode 2/3 — Rewards: [-0.4, -0.6]
Episode 3/3 — Rewards: [0.7, 0.0]
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Episode 1/10 — Rewards: [-0.2, -0.5]

Episode 2/10 — Rewards: [-0.6, 0.5]

Episode 3/10 — Rewards: [1.0, -0.1]

Episode 4/10 — Rewards: [0.8, -0.300000000000000041]
Episode 5/10 — Rewards: [-0.8999999999999999, -0.1]
Episode 6/10 — Rewards: [0.8, —-0.7999999999999999]
Episode 7/10 — Rewards: [1.0, 0.0]

Episode 8/10 — Rewards: [0.8, 0.0]

Episode 9/10 — Rewards: [1.0, -0.30000000000000004]
Episode 10/10 — Rewards: [1.0, -0.1]

According to our study, every movement made in the mini kitchen is designed to be recorded,
including the direction of the agents, the location of the items they hold, and the dynamic changes in
the environment. Even if our study does not reach the desired result, it forms an original and gradually

developed basis for reporting.

In the future our plan is running it with more agents and we will determine step by step goals. So,
baby can learn crawl than walking than running. Also applying different algortihms, approaches and

training agents for up level of this mini game are our other options.
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